
W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 1

EXECUTIVE SUMMARY
As managing legacy monolith applications becomes increasingly

cumbersome, many companies are investigating how integrating

microservices into their application architecture can solve problems

related to maintaining and updating the application, safely adding

new features, managing scaleability and onboarding new developers.

Microservices can solve a lot of pain points caused by a monolithic

architecture, but they also create some challenges. Serverless technology

allows companies to get the most benefits out of the transition to

microservices while automatically solving many of the problems

microservices create. The end result is that engineering teams spend more

time developing unique solutions to business problems rather than managing

servers, integrations or infrastructures.

WHAT MOTIVATES THE TRANSITION TO MICROSERVICES?
At an enterprise level, the transition to microservices is often motivated by increasing difficulty

managing the legacy monolith. The most common frustrations that cause IT departments to

start transitioning away from the monolith into a service oriented architecture are the following:

Maintenance and the Monolith
At one point, the legacy monolith was a sleek, state-of-the-art application, presumably

written following best practices of the time. But as the years have gone by, most

monoliths have been altered and added to; now there are millions of lines of code.

Often no one fully understands the complex relationships between different parts

of the code base, making it difficult to predict if a change to one part of the

application will interact with seemingly separate functions in unexpected ways.

This unpredictability makes it complex, slow and risky to build new features

or services and successfully integrate them into the monolith. In addition, no

maintenance task is simple on a million-line codebase. Relatively straightforward

updates like upgrading library versions are challenging and time-consuming.

Managing Team Members
Every new developer who starts to work on the monolith has to be familiar not only with the

programing language in which it was written, but also with company-specific idiosyncrasies.

A developer joining a team dedicated to authentication would still need to understand the

entire monolith because anything he or she wrote could interact with the entire code base.

In practice, this means it could be months before even the most experienced

Leveraging the
Microservices Transition
with Serverless

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 2

new hire could function independently. This severely hampers team

flexibility and the velocity at which a company can grow.

When every engineer on a large team is working on and making changes

to the same monolith, there is a sense of shared ownership—in the sense

that no one feels personally responsible for the health of the entire application. In

practice, this often leads to a buildup of technical debt that can become overwhelming.

Monoliths are Difficult and Inefficient to Scale
There is no way to scale a single component of a monolithic application, so increased usage

of one individual feature requires scaling the entire monolith. Computing resources have

to be provisioned to account for peak demand of the monolith’s most popular feature. This

leads to significant waste of computing resources—which translates to wasted money.

Moving to a microservices architecture can help with all of these pain points. Microservices

can be updated independently of each other, and there’s less risk that a new service will

break the entire application. The modular nature of a microservices architecture also

makes it much easier to onboard new team members—there’s no need for developers

responsible for authentication to understand the shopping cart code. Microservices

also allow for individual scaling, cutting down on wasted computing resources.

Although most companies start moving towards a service oriented architecture as a result of frustrations

with the monolith, the benefits of microservices go beyond reducing pain points. Microservices generally

allow teams greater flexibility, better security, greater ease in terms of onboarding new team members

and in general a more agile engineering department that is better able to focus on the company’s

business logic. When microservices are paired with a serverless environment, these advantages are

magnified while many of the downsides of a microservice-based architecture are mitigated.

HOW CAN SERVERLESS HELP YOU LEVERAGE MICROSERVICES?
Moving to microservices will not decrease the complexity of your application; it will shift the

complexity. Just like a tangled monolith with hundreds of features throughout millions of lines

of code is hard to manage, hundreds of interdependent microservices also create substantial

challenges. The easiest way to solve those problems is by running your service oriented architecture

on serverless. “Serverless solves a lot of the problems out-of-the-box that you need to solve for

microservices,” says Sam Goldstein, Vice President of Engineering.

“Serverless solves a lot of the problems out-of-the-box that
you need to solve for microservices.” — Sam Goldstein

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 3

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

Managing Integrations
One of the biggest challenges with microservice-based architectures is managing

the communication and integrations between all of the difference microservices.

“You need something that can help you manage a lot of different small pieces that

interact in sometimes very complex ways,” Goldstein explains. This can be done through

container orchestration or by running the microservices on top of virtual machines, but either

of those solutions require a highly-skilled team to manage the underlying infrastructure.

“Serverless is very well-suited to APIs and message passing,” says Nate Taggart, CEO of

Stackery. “Serverless provides an architecture that's really designed for microservices. You

could build the exact same thing, still using APIs, still using message passing, and then run it

on your own server or run it on a cluster. That doesn't really change it from the microservices

standpoint, but you have the added responsibility of managing all of these different services.”

Using appropriate serverless tooling can also help leverage the benefits of serverless even

further. Operational

tools such as Stackery

provide real-time visibility

into how microservices

interact as they respond

to user requests. These

operational tools make it

easier to both design the

architecture in the first

instance and to make

changes and correct

bugs after deployment.

Serverless Manages
the Infrastructure
If you’re running

microservices using

containers or on top of

virtual machines, you’ll

need to have an internal

team dedicated to either

container orchestration

The Strangler Approach and Serverless

“‘We have a microservices architecture could mean

anything from we have a monolithic application and

one service to we have 200 services and no monolith

in the middle,’” explains Nate Taggart, CEO of Stackery.

Just as the transition to microservices is generally a

gradual transition, with more and more services being

broken off the monolith until the monolith disappears,

the transition to serverless generally follows a similar

pattern. In addition, serverless can help make the

strangler approach to microservices practical by

creating serverless API layers, abstracting away the

old, fragile API. Using serverless operational tools

like Stackery allows you to strangle your monolith

while easily monitoring and managing operations.

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 4

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

or provisioning virtual machines. You’ll need to provision infrastructure and

manage load, scale and availability internally. The level of talent required to

do this successfully is scarce—even if you can afford it, engineers with the

necessary skills might prefer to work for a ‘cooler,’ more tech-focused company.

In addition, investing in infrastructure management offers little competitive

advantage for most companies. Unless your company has a business reason to be the

best in its industry at container orchestration or virtual machine management, running

microservices on either system involves wasting a considerable amount of resources.

“At most companies, it’s not like they will get a competitive advantage from building out a

big team of highly-paid specialists so that their dev team can succeed with microservices,”

explains Goldstein. “It may be necessary, but it doesn’t actually provide any benefit. With

serverless, you’re outsourcing

that piece, so instead of

becoming a specialist in

container orchestration,

you can focus on building

technology that does give you

a competitive advantage.”

Using a serverless

environment for microservices

eliminates the need for

in-house infrastructure

management, freeing up engineering resources for other tasks. It also gives companies

a way to leverage Amazon’s infrastructure management capabilities, which are

better than what the vast majority of companies are able to produce in-house.

Automatic Individual Scaling
One major advantage of moving to a microservice architecture is the ability to scale one

individual component without scaling the entire system. Serverless is the only way to

take full advantage of individual scaling. While individual scaling is technically possible

in a container system, there is often a minutes-long lag time as individual services scale

and more containers are provisioned—and getting individual service scaling to work

correctly in a container system is challenging from an engineering perspective.

In a serverless environment, scaling is automatic and handled by the serverless provider.

Microservices can scale up or down in seconds. Just as importantly, this rapid individual

“Serverless provides an architecture that's really
designed for microservices. You could build the
exact same thing, still using APIs, still using
message passing, and then run it on your own
server or run it on a cluster. That doesn't really
change it from the microservices standpoint, but
you have the added responsibility of managing
all of these different services.” — Nate Taggart

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 5

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

scaling is an out-of-the-box feature, so getting it to work requires no

additional engineering investment other than moving to serverless.

“The ability to scale on demand is very useful, especially since you don't need

to solve these incredibly difficult engineering challenges to do so,” Goldstein

says. “You can just say well, let's deploy our stuff to Lambda and it just works.”

Pay-Per-Use Cost Model
Serverless’s unique cost model allows companies to pay for the computing

resources they actually use instead of provisioning and paying for estimated

peak usage. When combined with microservices’ individual scaling, the

pay-per-use cost model can lead to substantial cost reductions.

“Pretty much any website or system is going to have highs and lows,” Goldstein

explains. “Only paying for what you’re using means you don’t have to provision for

peak capacity, and have much of your capacity sitting idle most of the time.”

Because both individual scaling and pay-per-use billing are included out-of-the-box in any

serverless environment, companies running microservices on serverless take advantage of

this cost structure automatically, without any additional work from the engineering team.

Track Usage and Costs for Individual Features
Serverless’s automatic individual scaling and pay-per-use cost structure make it

possible, with the correct tools, to get unprecedented visibility into the computing

costs associated with running individual components of an application. This allows

leadership teams to track the costs associated with each feature and use that

information to identify ways to optimize the company’s cost structures.

“With serverless, you have the potential to do a much better job tracking how the product

cost breakout compares against the revenue it generates,” Goldstein explains.

While this granular cost visibility isn’t an out-of-the-box feature in serverless

environments, running microservices on serverless with the appropriate

tools facilitates this level of health tracking and cost visibility in a way that

isn’t possible with any other architecture or environment set-up.

Faster Time-to-Market
The time-to-market advantage of microservices is perhaps the leading reason that companies

start moving away from their legacy monolith—but using serverless is the only way to actually

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 6

SERVERLESS APPLICATION
LIFECYCLE

deploy new microservices substantially faster than new features on a monolith.

“If your time-to-market involves setting up an enterprise container orchestration

platform, you may not actually get to market quickly,” Goldstein says.

Outsourcing the server provisioning and infrastructure management to the

cloud service provider by deploying on serverless cuts the deployment time for an

individual microservice dramatically, from potentially months to as little as hours.

Focus on the Business Logic
The goal for any engineering team should be to focus as much as possible on creating unique

solutions to business problems and opportunities. Transitioning to microservices is a way to

reduce the mundane maintenance required of engineering teams working on monoliths, but a

microservice-based architecture comes with its own set of tasks required to keep the application

working smoothly. Using serverless transfers responsibility for most of these background tasks

to the cloud provider, freeing up in-house engineers to work on meeting customers’ needs.

OVERCOMING COMMON BARRIERS TO USING
SERVERLESS FOR MICROSERVICES
Although the payoff is worth it, there are legitimate barriers to a serverless transition. Some of

these barriers are real but overcome-able while some barriers are “fictional,” or rooted more in

fear about new technologies and processes than in facts about using serverless environments.

Here are some common obstacles to moving microservices

to serverless—and how they can be mitigated:

Microservice Architectures have Complex Dependencies… and Failures
An architecture based on microservices is just as complex—or more so—than a monolith,

but the complexity is expressed differently. A complex web of interdependent microservices

means that failures, when they happen, can be both harder to diagnose and more serious

than failures in a monolith. “When you’re transitioning from monolith to microservice,

you’re trading high probability low impact risk for low probability, potentially higher impact

risk,” explains Nate Taggart, Stackery’s CEO. This is actually an argument in favor of moving

microservices to serverless: In serverless, you’re outsourcing a lot of that risk to Amazon.

“If your time-to-market involves setting up an
enterprise container orchestration platform, you may
not actually get to market quickly.” — Sam Goldstein

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 7

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

However, without appropriate tooling, serverless environments can be very

opaque, and diagnosing a problem is near-impossible if best practices weren’t

followed at the time of deployment. This can make companies uncomfortable

with moving business-crucial parts of their application to serverless.

Correct operational tooling solves this problem by ensuring that best practices are consistently

followed throughout the development and deployment process. With the correct tools,

preventing, diagnosing and fixing failures in a microservices architecture is easier in serverless

than in any other kind of

computing environment.

Microservices
Require Maintaining
and Updating
100s of Services
When handling a single,

monolithic application, it

is possible for engineers

to handle updates,

changes and operational

concerns manually. In

an architecture with

hundreds of microservices,

manually making

changes is impossible.

Microservice architectures

therefore rely heavily

on automation and

tooling. Serverless does

not provide any out-of-

the-box solutions for

managing automation,

and as a relatively new

technology, third-party

tools to provide the

automation that service

oriented architectures rely

on is relatively immature.

Serverless vs Containers

Containers and serverless are often presented as

competing technologies, but in reality there are

situations in which containers are more appropriate and

other situations where serverless is the better choice.

Serverless is best for:

•	 Scaling individual microservices

•	 Removing the need to manage infrastructure

•	 Managing complex microservice integrations

•	 Quick time-to-market for new features

•	� Visibility into the costs and resources

used by each service

Containers are best for:

•	 Processes with a long run-time

•	� Situations where legacy applications need

to be “lifted and shifted” quickly, since it is

easier to transfer most legacy applications

to containers than to serverless

•	� Any situations where full control of

the environment is essential

Because containers require substantial, continuing

investment in orchestration, they should only be used

for the services that aren’t practical to run on serverless.

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 8

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

Managing automation throughout the application lifecycle is one

of the core benefits of using Stackery’s Operations Console, and

can solve many of the management problems facing complex

microservices architectures running on serverless.

Parts of Your Application Might Be Incompatible with Serverless
Just as there might be some parts of your application that shouldn’t be broken apart into

microservices, there might be certain functions that don’t make sense in serverless.

An obvious example relates to run-times. In general, serverless functions

can’t run for longer than five minutes, so long-running parts of your

application wouldn’t be appropriate for a serverless environment.

Serverless, like microservices,

is not an all-or-nothing

proposition. “As you’re

making this transition, you

are kind of opportunistically

picking off areas where you

can break the service out from your code base,” Taggart explains. As services are broken

off from the monolith, they can be transitioned into serverless if appropriate—but stay in a

traditional cloud environment if there are compelling reasons against using serverless.

Moving to Serverless Involves Another Learning Curve for your Team
If you’re in the midst of transitioning from a monolithic application to a service oriented

architecture, your engineering team is already learning new skills, taking on new roles and

adjusting to a new way to work together. Transferring some or all of the microservices to

serverless requires that engineers learn new skill sets, too—but the learning curve is relatively

minor compared with the changes involved in going from a monolith to microservices.

In addition, engineering teams have to be adapting and changing continually—learning

new sets of best practices, adopting better security practices and generally keeping

pace with progress. The new skills required to move microservices to a serverless

environment shouldn’t be a major impediment to serverless adoption for most teams.

In addition, using intuitive operational tooling as part of the transition to serverless can

dramatically reduce the time it takes for engineers to become comfortable running

microservices on serverless while also reducing the risk of errors during the learning process.

“Moving to serverless is a relatively small
shift, in terms of learning curves, compared
to the changes required in the transition
to microservices. ” — Nate Taggart

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 9

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

Moving to a microservices architecture is an institutional investment

in reducing the learning curve for all new team members in the future.

“You’re already switching strategies from monolith to microservice

and doing the legwork of having to re-architect,” explains Taggart.

“Moving to serverless is a relatively small shift, in terms of learning curves,

compared to the changes required in the transition to microservices.”

Concern about Lock-In
Although there is no more lock-in associated with serverless environments than there is in using any

other cloud provider or equipment made by a third party, the opacity of serverless environments—and

the fact that running on a local machine isn’t possible—make some teams concerned that moving

from one serverless provider or back to a traditional cloud environment could be extremely difficult.

While using serverless environments does involve more of a commitment to a specific vendor

than running an open-source container on virtual machines, microservices running on serverless

are written using standard programming languages and could be migrated from one provider

to another (or back to a traditional cloud environment) relatively easily. So while lock-in gets a

significant amount of press, in reality it should not prevent any company from adopting serverless.

WHAT MICROSERVICES ON SERVERLESS LOOKS LIKE
Although the payoff is worth it, there are legitimate barriers to a serverless transition. Some of

these barriers are real but overcome-able while some barriers are “fictional,” or rooted more in

fear about new technologies and processes than in facts about using serverless environments.

Here’s what to expect as you move your microservices into a serverless environment:

Decreasing Environment / Server Costs
As more and more of your application is run through individually-scaleable microservices in a

serverless environment, you will increasingly be paying only for the computing resources that the

application uses instead of for the maximum amount of computing resources the entire application

would need during a spike in demand. This cost model leads to substantial savings for most

companies. The savings increase as more of the application is run using microservices on serverless.

Dramatic Drop in Time Spent Provisioning Servers,
Managing Integrations and Infrastructure
If you’re running a microservices architecture on an in-house data center or in a cloud

environment, determining the computing resources for each individual service and provisioning

the required servers can eat up a substantial amount of time. This delays new feature deployment

and also is an inefficient use of your engineering team’s time. Likewise, a microservices

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 10

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

architecture run on containers or virtual machines will require a team of

engineers to manage integrations and the underlying infrastructure.

In serverless, server provisioning, integrations and infrastructure is handled

automatically and immediately by the cloud provider. Running microservices

on serverless can free up entire teams to work on other projects. Using appropriate

tooling can reduce the time spent managing integrations and infrastructure even further.

Quick Releases
Eliminating the need to manage servers provisioning, integrations and infrastructure

in-house means that new microservices deployed to a serverless environment get

to the market much faster than the same microservice would if deployed using

containers, virtual machines or other technology. Serverless enables companies to get

new features to their customers in a matter of hours instead of months. “It’s a time

to market benefit that really drives people to serverless,” Goldstein explains.

Focused Engineering Teams
Engineers are among the highest-paid employees at most companies, and their skills are

ideally used to create unique solutions to business problems. In reality, most engineering

teams have to spend a substantial amount of time on tasks like infrastructure management

and server provisioning that don’t give the company any competitive advantage.

A microservices architecture run on serverless allows engineering teams

the maximum amount of focus on the company’s core business logic by

outsourcing server provisioning and infrastructure management. Using available

serverless tools like Stackery further simplifies the complexity of a microservices

architecture and eliminates the need to build operational tooling in-house.

The result: Engineering teams are able to spend their time creating new functions

and features that meet customers’ needs and provide a competitive advantage—

and they are able to do so dramatically faster than possible when working with

either a monolith or microservices in a non-serverless environment.

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 11

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

GET THE MOST OUT
OF MICROSERVICES
AND SERVERLESS
WITH STACKERY
One of the biggest barriers to widespread

serverless adoption is the gap in operational

tooling for serverless environments. Tooling

is essential when handling complex

microservice architectures with hundreds

of interconnected services, and visibility and

monitoring capabilities are key to successfully

launching and running any business-crucial

application. Stackery’s intuitive serverless

operations console provides the automation

and visibility needed to successfully run

complex architectures on serverless. “We

build out the best practices under the

covers, and we do it in the cloud native way,”

explains Nate Taggart, Stackery’s CEO.

Intuitively map, create and change
the complex dependencies in your

microservices architecture. Stackery’s

infrastructure provisioning interface

allows you to easily visualize the complex

relationships in your architecture and

manage the connections between services

with a drag-and-drop interface.

Automate your deployment process.

Managing hundreds of microservices without

automated deployment processes is asking

for trouble. Stackery provides automatic

deployment management so you can

ensure that all microservices are packaged

and deployed according to best practices.

Stackery also dramatically reduces the

amount of time spent on deployments.

Access intuitively curated
logs, metrics and health
tracking information.

Stackery provides detailed

visibility into the performance

of both individual services and the

application as a whole, giving you a level

of insight that is not otherwise possible.

Get full diagnostic details on all errors.

Stackery automatically wraps code in Try/

Catch logic, ensuring that you have detailed

error and error trace information collected

in real time. Stackery’s error monitoring

ensures that developers get a complete stack

trace for any errors and are able to pinpoint

the problem microservice (s) in seconds.

Speed up the learning curve. Stackery’s

operations console makes it easier for

developers new to serverless to get started

quickly while enforcing best practices and

managing permissions, so if a mistake happens

it doesn’t cause catastrophic failures.

Focus on Your Core Business. Using

Stackery to create, monitor and manage

microservice architectures on serverless

means outsourcing as many tasks as possible,

from server provisioning to infrastructure

management to operational tooling. This

gives your engineers the freedom to focus on

the things that make your business unique.

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 12

LEVERAGING THE MICROSERVICES
TRANSITION WITH SERVERLESS

ABOUT STACKERY

The serverless architecture movement is transforming the ways modern

organizations build applications and manage infrastructure. As early users of

AWS Lambda, Stackery Founders Chase Douglas and Nate Taggart found themselves

in need of a solution to the operational challenges presented by this technology. Having

worked together as early employees of New Relic, Nate and Chase took their experience

building for the developer and operations ecosystem and, with the early backing of

Techstars Seattle, went on to launch Stackery to bring serverless technology mainstream.

