
W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 1

SERVERLESS USE CASESEnterprise
Serverless
Use Cases

EXECUTIVE SUMMARY
Over the past several years, there has been accelerating adoption

of serverless application architectures within modern enterprise

organizations. Benefits such as decreased infrastructure costs

and improved time to market are major factors driving this trend.

Adoption of micro-service architecture patterns and DevOps are

further accelerating the shift toward serverless technology.

As the number of companies taking advantage of serverless technology has

increased, a growing list of common enterprise use cases has emerged. For

these common enterprise needs, serverless application architecture offers major

cost and time to market benefits over traditional architectures. Leaders looking to bring

the advantages of serverless into their own organizations generally have questions about

where serverless patterns are best applied and how to navigate integration with existing

systems. In this document we provide an overview of the qualities that define serverless

application architectures and discuss common enterprise use cases and patterns where leading

edge enterprises are gaining a competitive advantage through the use of serverless technology.

OVERVIEW OF SERVERLESS TECHNOLOGY
At its core, serverless technology is an infrastructure abstraction which

enables developers to focus on writing software and managing application

performance, rather than deploying, maintaining, and scaling the underlying

server infrastructure -- tasks which are offloaded to the cloud vendor.

Serverless Application Architectures have several key characteristics:

1.	 �Emphasis on using ephemeral compute and external services as the
building blocks of the system.

2.	 �Close correspondence between resources used and resources billed. For
example, the pay-per-use pricing of Functions-as-a-Service (FaaS) platforms
such as AWS Lambda.

3.	 �Managed execution environment that enables on-demand scaling and
high availability by default, with reduced operational responsibility for
the enterprise.

Typical serverless applications will use one or more FaaS functions to provide compute and

integrate with data storage systems, distributed queues, and/or HTTP endpoints. These

technical building blocks can be flexibly combined to meet a wide variety of business use

cases where low operational costs, immediate scalability, and fast time to market are desirable.

SERVERLESS USE CASES

KINESIS STREAM INGEST FUNCTION DATABASEHTTPS ENDPOINT

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 2

INGESTION AND PROCESSING OF ANALYTICS DATA

Overview
All modern enterprises ingest large amounts of analytics data from web

properties and other sources. This data is often siloed across multiple internal

and 3rd party analytics providers, leading to inefficiency and blind spots. Serverless

technology is a fit for building the highly scalable, event-driven data ingest pipelines

used for event collection and data processing of analytics data. A common enterprise

scenario would be to create an application to handle the collection of a new data source

(e.g. telemetry data from a new product), or to create an application which provides

a unified analytics pipeline which collects all analytics events, performs any necessary

processing, and forwards to one or more third party or in-house tools for analysis.

Benefits
■■ �On-demand scaling is an ideal fit

for data collection workloads.

■■ �Provides flexibility to rapidly integrate

various data collection and analysis

tools to meet evolving business needs.

■■ �Pay-per-use billing model is generally
more cost effective than traditional
pay-to-provision models.

■■ �Resilient to large traffic spikes with
minimal risk of data loss.

Considerations
■■ �Cold start and concurrent execution

limits should be considered when
evaluating system reliability needs.

■■ �Architecture should generally aim to
decouple network ingest from data
processing to avoid data loss and effectively
respond to upstream system backpressure.

■■ �Event-streaming technologies like
AWS Kinesis Streams play a central
role in these data pipelines.

1

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 3

SERVERLESS USE CASES

FUNCTION EXISTING DATABASEHTTPS ENDPOINT

EXISTING HTTPS API

EXISTING SOAP API

API INTEGRATION LAYER

Overview
Modern enterprises frequently need to integrate data and functionality

from multiple existing applications, services and APIs. Often it is desirable to

provide a consistent API frontend which interacts with multiple backend service

APIs. This pattern is commonly used when it is desirable to provide multiple downstream

teams with a simpler, more consistent integration point. This pattern is also commonly

invoked when rewriting or replacing legacy APIs, by putting an API proxy layer in front

of existing APIs, and incrementally augmenting or replacing existing functionality.

2

Benefits
■■ �Centralization of complex system

integration can accelerate
application development.

■■ �API proxy pattern decreases project
risk in costly legacy rewrite projects
by enabling incremental delivery.

■■ �Pay per use billing model is generally
very cost effective in these use cases.

Considerations
■■ �Integration of multiple distributed systems

requires careful reasoning about how
upstream failures are handled.

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 4

SERVERLESS USE CASES

LAMBDA FUNCTION DYNAMODB TABLEAPI ENDPOINT

CONNECTED DEVICE (IOT) BACKEND

Overview
Many modern enterprises deploy applications that interact with customer

devices such as mobile phones or Internet of Things (IoT) devices. For example,

a coffee retailer may allow customers to submit orders via a mobile app, or a smart

home device manufacturer may allow customers to control their home thermostat via an

Alexa skill. Often, traffic levels fluctuate dramatically based on factors such as customer

usage patterns and regional events. The scale-on-demand characteristics of serverless

application architectures lends itself well to this use case, as it allows the system to incur

minimal infrastructure cost during low load periods and rapidly scale to meet demand

of high load periods. Additionally, pay-per-use billing can allow for increased cost

modeling and reduce the risk of supporting these devices over the product lifespan.

Benefits
■■ �Scale-on-demand architecture

enables rapid scale up and high-
availability, while incurring minimal
costs during low traffic periods.

■■ �Deliberate use of cloud provider regions,
CDNs, and related cloud provider
capabilities can decrease latency and
improve customer experience.

Considerations
■■ �Design of protocol for device/

backend communication should
address mechanisms for upgrading
client software and managing
changes in functionality over time.

3

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 5

SERVERLESS USE CASES

IMAGE RESIZE FUNCTION

IMAGE TAGGING FUNCTION

S3 BUCKET

DATABASE

S3 BUCKET

DIGITAL ASSET PROCESSING

Overview
Modern enterprises are often responsible for managing digital assets submitted

by users. For example many applications provide collaboration or social media

functionality where users upload photos, videos, and other media. Often, user submitted

media must be put through a variety of processing steps, for example to resize images or

transcode video bitrates. In some cases it may be desirable to use Artificial Intelligence (AI)

APIs (e.g. AWS Lex, AWS Rekognition) to perform tasks such as tagging images, speech-to-text

conversion, or flagging inappropriate content. These event driven workflows are an ideal fit for

serverless application architecture, which provides mechanisms for functions to be invoked in

response to an external event such as a file upload to an object storage service such as AWS S3.

4

Benefits
■■ �Event-driven digital asset processing
pipelines are a natural fit for serverless
architectures and challenging to
implement in traditional architectures.

■■ �Compute capacity is spun up on
demand in response to processing needs
making costs low and predictable.

Considerations
■■ �Data locality should be considered

during architecture phase. Ideally
compute and storage resources
should be located within close
geographic proximity (e.g. within
the same AWS region) to minimize
latency and network transfer costs.

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 6

SERVERLESS USE CASES

LAMBDA FUNCTION DATABASEINTERNAL WEBSITE EMAIL NOTIFICATION FUNCTION

INTERNAL BUSINESS TOOLING

Overview
Every modern enterprise follows a set of internal business processes to

coordinate projects, manage approval decisions, and collect and distribute

information internally. These processes require coordination between multiple

employees and often are unique to an organization. In many organizations teams exist

to provide technical tooling around internal processes. For example an application that

manages employee attendance of an annual security training course or an executive

dashboard surfacing relevant information to key decision makers on a continuous basis.

Benefits
■■ �Modeling business workflows that

consist of a series of transactional
steps (e.g. requesting and receiving
approval) dovetails well with the
transactional and event driven qualities
of serverless application architecture.

■■ �Functions-as-a-Service platforms
are well suited to integrating diverse
systems and generating a centralized
view of data across an organization
which is the key characteristic of
Executive Dashboard applications.

■■ �Generally, internal business tools have
low computational requirements making
pay-per-use billing model attractive.

5

Considerations
■■ �In many cases 3rd-party SaaS

solutions can be used to solve internal
business tooling challenges without
incurring ongoing development
and maintenance costs. Serverless
technologies are an attractive
choice in this space when custom
development is deemed necessary.

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 7

SERVERLESS USE CASES

CDN

WEBSITE BACKEND API

SINGLE PAGE APPLICATION ASSETS

DATABASEHTTPS API

Benefits
■■ �Hosting costs scale directly with site traffic

and are often orders of magnitude cheaper
than comparable pay-to-provision systems.

■■ �The infrastructure abstraction
provided by serverless architectures
simplifies hosting setup process and
can result in faster time to market.

■■ �Easy integration with cloud provider’s
Content Delivery Network (CDN),
SSL certificate management, and
security features such as DDoS
protection can provide significant
benefits over alternatives.

Considerations
■■ �There may be organizational benefits

to avoiding introduction of new web
hosting architectural patterns.

■■ �Implementing new websites using
serverless architecture can be used
as a low risk way to “test the waters”
and bring an engineering team up
to speed on serverless best practices.

6 PUBLIC FACING WEBSITE

Overview
Every modern enterprise manages multiple web properties which generally

play critical business roles. While a variety of traditional architectures and

PaaS solutions are appropriate solutions for this extremely common need, it is

straightforward to develop public facing web sites and web applications using serverless

technology. It is worth considering these benefits when planning new development.

Example Architecture

W
W

W
.S

T
A

C
K

E
R

Y
.IO

 	
E

N
T

E
R

P
R

IS
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 8

SERVERLESS USE CASES

AUTH ENRICH FUNCTIONSTREAM STREAMPOST /INGEST

FUNCTION

FUNCTION STATE FUNCTION STATE
FUNCTION STATE

FUNCTION STATE

7 MANAGED SOA PLATFORM

Overview
Many organizations have been migrating towards micro-service architecture

patterns and DevOps process. With micro-service patterns, managing and

orchestrating many independent services becomes more challenging. This has led to

the rise of complex orchestration platforms (e.g. kubernetes, mesos, docker swarm) to

provide features like dynamic scaling, fault tolerance, and service discovery. Serverless

architecture components such as FaaS provide a lower management alternative with

similar benefits, enabling larger organizations to provide internal engineering teams with

a managed hosting and orchestration platform on which to deploy their applications.

Example Architecture

Benefits
■■ �Serverless technology provides similar
benefits to container orchestration
platforms such as Kubernetes with
a lower infrastructure management
burden and higher level of abstraction
for application developers.

Considerations
■■ �Vendor specific limits on execution

time, memory, and disk space
mean certain applications need
significant changes to run in a
serverless architecture. It is generally
necessary to provide a variety of
hosting options to accommodate
a modern enterprises’ full suite of
application infrastructure needs.

