
W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 1

SERVERLESS APPLICATION
LIFECYCLE

EXECUTIVE SUMMARY

Serverless technology offers the possibility to dramatically reduce

IT costs while allowing engineering teams to develop and deploy

applications significantly faster than with either in-house servers

or traditional cloud-based servers. However, the out-of-the-box

set-up from serverless providers makes architecture design and

implementation tedious and error prone while monitoring and

debugging is close to impossible, making it difficult to justify using

serverless technology for customer-facing applications. With the right

tools, however, engineering teams can take advantage of serverless’s

potential without compromising the ability to deploy safely, monitor

application performance and recover from a crisis.

WHAT IS SERVERLESS AND WHY
COMPANIES SHOULD SWITCH

Serverless technology refers to a type of cloud computing in which the business or individual

user does not provision servers directly, instead depending on a cloud service provider to

provision and manage computing resources on an as-needed basis. Serverless technology—

which absolutely relies on servers, even if the end user doesn’t need to worry about them—

allows companies to pay for only the computing time that their application actually uses.

In a serverless system, applications that are not in use are dormant. When an application

is called, the functions run, serve the application and then go dormant again once the

application is finished.

WHY MAKE THE SWITCH?

Lower IT costs
With serverless technology, you only pay for the computing resources you actually use.

Companies running either an onsite data center or using traditional cloud computing need to

provision enough server capacity to handle peak usage. Inevitably, though, most of the time

the company would be paying for more server capacity than is actually needed. Serverless

eliminates wasted computing resources and, in most use cases, dramatically reduces IT costs.

Faster application development
Serverless technology lends itself to quick time-to-market and applications developed

by small teams. It’s not unreasonable for a team to develop and deploy a serverless

application within days of determining a business need. “Serverless is a game-changer

Managing the Serverless
Application Lifecycle
Safely and Intuitively
with Architecture Design
and Deployment Tools

SERVERLESS APPLICATION
LIFECYCLE

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 2

in how applications can be developed quickly,” says Patrick Steger, owner

of IDMA Solutions, a custom application development company. The agility

in bringing ideas to the market has the potential to improve how well your

business can respond to customer needs and to general market conditions.

Less engineering overhead
In a traditional computing world, engineers need to spend a significant amount of time

provisioning and configuring servers. The time engineers spend managing servers is

time that they are not working on projects that deliver value to customers. Serverless technology

allows engineers to focus more of

their time on creating value and

less on managing the backend.

CHALLENGES
FOR ENTERPRISE
ADOPTION OF
SERVERLESS

Serverless technology is catching

on relatively rapidly, considering

that Amazon Web Services

launched Lambda in 2014. As

a new technology, however,

there are a number of challenges

related to successfully deploying

and maintaining serverless

applications, especially business-

crucial applications and any

public-facing applications.

Many of the challenges in

developing, testing and monitoring

serverless applications stem

from the fact that serverless

applications are ephemeral.

Traditional applications are

essentially static. If there is an

error, engineers often diagnose

EPHEMERAL FUNCTIONS IN SERVERLESS

One of the key challenges in testing, debugging and

monitoring serverless applications is the impossibility

of logging in to a server somewhere and poking around

to see what went wrong. Serverless functions run

and then disappear. “All you have is the data that you

collected while it was running,” says Sam Goldstein,

director of engineering at Stackery. If logs aren’t

collected in real time, as the application is active,

information about everything from cold start times and

other performance information to errors, error traces

and failures is lost permanently. It’s entirely possible

to work directly with the tools provided by Amazon

Web Services to correctly set up all of the necessary

logs—at least in theory. In practice, it takes hundreds

or thousands of clicks, making correct set-up unlikely.

The ephemeral nature of serverless makes logs

even more crucial than in a traditional computing

environment. It simply isn’t possible to recover

information after the fact if the configuration

wasn’t correct at run-time. Tooling is the only

realistic way to ensure that performance and

error data is collected across the board.

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 3

SERVERLESS APPLICATION
LIFECYCLE

the problem by logging in to the server after the fact and looking around to see

what went wrong. Serverless applications, however, run and then disappear—

and there’s no server to log into, anyway. If you don’t have error logging

properly configured, it can be impossible to diagnose or recreate the error.

In addition, the tooling available for serverless applications is still relatively immature, and

the solutions offered by serverless service providers like Amazon Web Services Lambda

are difficult to use. Engineers could find themselves freed from server management

but spending at least as much time configuring the serverless environment, managing

deployments and manually searching through logs to debug their applications.

The following are some of the challenges to adopting serverless

technologies in each phase of the application lifecycle:

Development and Deployment
After defining the application’s business logic and conceptualizing the application

architecture, the next step in building a serverless application with AWS Lambda

is to define your architecture in CloudFormation. This is a laborious process that

involves manually defining every aspect of your infrastructure using JSON. “In Amazon

Web Services, you need to know how to provision a dozen different fundamental

resources, like gateways, route tables, private and public subnets that are spread

across multiple availability zones,” explains Chase Douglas, co-founder of Stackery.

It’s a slow, error-prone process that’s also unfamiliar to many engineers who are new

to serverless. The combination of hundreds of human steps, a steep learning curve

and un-intuitive design make mistakes almost inevitable. The sheer amount of time

it takes to correctly set up the application makes it impractical to set up a testing

environment, while the opportunity for errors means that even if a test environment

were set up, it would likely have slight configuration differences due to human error.

Shipping the code to the production environment comes with its own difficulties. Unlike in a

traditional server environment, development teams—not operations teams—are responsible

for code deployment. This shift in responsibilities requires both a mentality shift and another

learning curve—again, increasing the risk of error. This is further complicated by the fact that

“In AWS you need to know how to provision a dozen

different fundamental resources that are spread across

multiple availability zones” - Chase Douglas

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 4

SERVERLESS APPLICATION
LIFECYCLE

serverless applications are generally complex. Any given application could have

hundreds of functions that each need to be packaged correctly and shipped to

the production environment. This deployment process could take an engineer

days. In addition to being slow, the manual nature of deployment using Amazon

Web Services’ raw tools increases the risk of errors and makes repeatability elusive.

Testing
Testing a serverless application is fundamentally different from testing a traditional

application run on either locally managed servers or in a more traditional cloud computing

environment. In those cases, it’s possible to create an environment on one laptop that

is similar enough to the production environment to run tests on. That’s not possible

when developing a

serverless application.

“You don’t have a full replica

of Amazon Web Services

on your laptop,” says Sam

Goldstein, director of

engineering at Stackery.

Serverless applications

generally have complex

dependencies and are based

on a large number of interrelated microservices. “You tend to be relying on cloud provider

instructions in terms of how you pass messages between microservices or coordinate

work between a cluster of things and there are certain advantages to that, but one of the

disadvantages is it becomes very challenging to reproduce that or test that locally.”

The only viable way to test serverless applications is to have a separate

testing environment hosted with the serverless service provider.

This strategy depends on the ability to set up the test environment identically to the

production environment and being able to deploy both the initial code and any changes in

an easily repeatable way. Without additional tooling, both environment management and

code deployment in AWS Lambda is too error-prone for reliable testing in a test instance.

Monitoring
In a serverless environment, monitoring is another responsibility that is shifted from

operations teams to development teams. Because many development teams aren’t

used to monitoring applications, it can be easy to forget that while developing, testing

“You tend to be relying on cloud provider
instructions in terms of how you pass messages
between microservices or coordinate work
between a cluster of things and there are certain
advantages to that, but one of the disadvantages
is it becomes very challenging to reproduce
that or test that locally.” — Sam Goldstein

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 5

SERVERLESS APPLICATION
LIFECYCLE

and deploying is the most time-intensive part of an application’s life, the

monitoring phase is in fact the longest. Effectively monitoring applications

for errors and being able to quickly identify the source of problems is

key to ensuring the application works for the end client on an everyday

basis and that you are able to recover as quickly as possible from a crisis.

Monitoring a serverless

application is

fundamentally different

from monitoring a

traditional application.

First of all, serverless applications are generally built on microservices and have more

complex architectures and dependencies. “if you have one thing that has to be monitored,

that’s a lot easier to do by hand or do through a manual, tedious process than if you have

one hundred things or a thousand things,” Goldstein says. There are both more functions

to monitor—and more places where an error could occur—in serverless applications.

More importantly, though, is the ephemeral nature of serverless applications.

A function runs and then goes away. There is no server to SSH into and

retroactively collect data on an error after the function has run—if you do

not collect data in real time, as the functions are running, the data is lost.

The ability to monitor a serverless application depends on setting up the logs

during the initial process of defining the environment. It is theoretically possible to

correctly configure all of the logs manually in AWS—however, doing so would require

thousands of clicks. This highly manual way of setting up logs is time-consuming

and so error-prone that it all but ensures that you won’t have full coverage.

In addition, AWS’s default log interface is incredibly challenging to navigate. “When you’re

just relying on the raw tools that AWS gives you, it is surprisingly difficult to even find the

logs,” Goldstein says. Using AWS’s default logging tools, it could take hours and hundreds

of clicks to find the information you need about a specific error—if the information exists

at all. In a client-facing application—especially in a crisis situation—that isn’t acceptable.

Choices for Moving to Serverless
Given the real challenges to successfully using serverless technology on client-facing

applications, companies need tools to help define serverless environments, build serverless

architectures, test and deploy serverless applications and monitor those applications once

“If you do not collect data in real time, as

the functions are running, the data is lost.”

- Chase Douglas

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 6

SERVERLESS APPLICATION
LIFECYCLE

they are live. One possibility is for each company to develop its own

tools to manage the serverless application lifecycle. This requires a

near-bottomless engineering budget and a deep operations bench.

It also contradicts the lean and fast ethos of serverless development.

The second option is to rely on third-party tools like Stackery to automate

environment management, architecture creation, deployment and monitoring.

HOW AUTOMATED ARCHITECTURE DEVELOPMENT
AND DEPLOYMENT HELPS THROUGHOUT
THE APPLICATION LIFECYCLE

Using tooling to manage your architecture development and deployment allows

developers to create serverless architectures quickly, to make changes that are

repeatable across environments and to deploy applications easily and without errors.

Development
Once a business logic for a new application has been established and a team

has been assembled, an automated architecture development tool lets

engineers quickly take their conceptual ideas for an effective application

architecture from the whiteboard to reality in Amazon Web Services.

“You are able to visually see what you are trying to create in serverless,” says Patrick Steger.

“You can visually see all of your Lambdas.” Instead of a list of code, you have an intuitive,

visual interface that makes it easy to understand the connections between microservices.

The visual architecture design almost

eliminates the learning curve involved

in setting up a serverless environment.

It’s easy to explain to non-engineers

in management how the application

works; it’s also simple to onboard new

team members.

Automated architecture tools let

engineers quickly draw out their

architecture design and connect services with a drag-and-drop interface while the tool

generates the JSON code that creates the architecture in CloudFormation. The tool

automatically configures the logs, configures IAM rules and correctly packages dependencies.

“Tooling that automatically creates your
serverless architecture dramatically reduces
that amount of time it takes to create a
serverless application; more importantly, it
reduces the probability of errors in the logging
and permissions configurations.”
— Sam Goldstein

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 7

SERVERLESS APPLICATION
LIFECYCLE

Tooling that automatically creates your serverless architecture dramatically

reduces that amount of time it takes to create a serverless application;

more importantly, it reduces the probability of errors in the logging and

permissions configurations. It also helps combat what Steger calls “cowboy

coding,”—sloppy code that doesn’t adhere to best practices. Cowboy coding

is fine for hobby projects developed by individuals, but can be fatal to business

applications developed by teams that are part of a web of dependencies.

“How do we actually make sure that a team of 10, 20, 50, 100 or a thousand

engineers can actually be effective in shipping applications?” asks

Douglas. The answer, he says, is with effective serverless tools.

Deployment
Instead of an error-prone, multi-step deployment process, engineers who

use an automated architecture and deployment tool will be able to deploy

their application to either a test environment or production environment in

one click. There is no need to manually package hundreds of functions or for

engineers to spend hours going through a manual deployment checklist.

Testing
One-click deployment is essential to fully testing a serverless

application in a test environment for the following reasons:

 ■ If each microservice requires hundreds of human steps to deploy, the cost

 in terms of human resources to deploying that microservice twice—once

 to the test environment, once to the production environment—will simply

 be too great for most companies.

 ■ Accurate testing depends on the ability to deploy the application in exactly

 the same way to the test environment and production environment. Any

 deployment process that involves hundreds of human steps is unlikely to be

 done exactly the same way twice, which renders the test environment useless.

“Using an automated architecture design tool ensures

that you are collecting all of the information you need to

troubleshoot the application as part of both mundane

maintenance and to recover from a failure. “ - Chase Douglas

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 8

SERVERLESS APPLICATION
LIFECYCLE

The ability to automatically manage deployment is essential to

accurately testing your serverless applications—which is, in turn,

essential to creating applications that perform reliably for end users.

Monitoring
Because serverless applications’ performance and error data must be collected in real

time, successful monitoring strategies require setting up the logs correctly at the time the

architecture is defined. “In theory, you could have your architecture up and running in Amazon

Web Services and you could go through a thousand clicks in their console to get all that stuff

turned on… but with that type of process, especially when there’s multiple people involved,

you’re not going to have comprehensive coverage,” explains Goldstein, from Stackery.

Using an automated architecture design tool ensures that you are collecting

all of the information you need to troubleshoot the application as part

of both mundane maintenance and to recover from a failure.

If you don’t have a way to quickly navigate to the relevant log, however, engineers

could find themselves bogged down with information and unable to find the

applicable log. By default, each instance of Lambda will create a separate log,

creating a massive amount of data that is hard to make sense of manually.

Using a tool with an intuitive interface that both correctly configures the logs at the beginning

of the application’s life and organizes and curates the logs for easy, intuitive access at any

time can mean the difference between fifteen minutes of downtime and a day of downtime.

Monitoring isn’t just about recovering from

a crisis—it’s also about peering into the

application to see how it is running and

where inefficiencies could be fixed. Without

additional tooling, applications running

on Lambda in Amazon Web Services are

fairly opaque. Engineers aren’t able to

look into the application and analyze how

it’s performing in the real world. With

additional tooling, however, developers can

sort through curated logs and dive deeper

into specific performance measures like

how many times particular functions were

run and if there were any errors generated.

“With an automated architecture

development and deployment tool,

IT departments at an enterprise level

can expand the use of serverless

into public-facing applications and

start taking advantage of not just

serverless’s reduced computing costs

but also the quick time-to-market

for serverless applications.”

— Chase Douglas

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 9

SERVERLESS APPLICATION
LIFECYCLE

This easily accessible feedback leads to

better-quality applications and engineering

teams that are more skilled and more

comfortable creating serverless applications.

WHAT TO EXPECT WITH
AUTOMATED ARCHITECTURE
DEVELOPMENT AND
DEPLOYMENT

Ready to try an automated architecture

development and deployment tool

for serverless environments?

Here’s what you can expect:

Find the confidence to try serverless on public-

facing applications. Many businesses have dipped

their toes into serverless technology by migrating

jobs and other internal, way-back-end functions

to serverless. With an automated architecture

development and deployment tool, IT departments

at an enterprise level can expand the use of

serverless into public-facing applications and

start taking advantage of not just serverless’s

reduced computing costs but also the quick

time-to-market for serverless applications.

Increase engineering team morale by focusing on

creating great applications and eliminating tedium.

Moving to a serverless environment eliminates

the need for internal engineering teams to handle

server management. Without

an automated architecture

design and deployment tool,

however, engineering teams

could find themselves stuck with

a manual and onerous deployment process

that take just as much time as server management.

With a third-party architecture design tool,

engineering teams can focus on identifying creative

technological solutions to business problems.

Go from idea to launch as quickly as possible.

Between the time saved by outsourcing server

management and the time saved by using

an architecture design and deployment tool,

engineering teams will be able to move from

idea to proof of concept to launch in a fraction of

the time it would take in a traditional computing

environment as well as faster than if they had to

either manually design and deploy their serverless

applications or build proprietary tools from scratch.

Avoid the human errors that plague all manual

deployments. Any process that requires a

human to take tens—or hundreds—of steps is

highly susceptible to errors. Automating your

architecture design, your log and permissions

configuration and your deployment process

dramatically reduces the likelihood of human

error—and makes it much easier to locate

the error source when there is a problem.

Make collaboration on serverless projects

smooth, for experienced and newbie serverless

developers. Serverless teams are generally

sleek, but they’re still teams. Using a tool

with an intuitive interface—and automatically

configured permissions—makes it easier to

“Any process that requires

a human to take tens—

or hundreds—of steps

is highly susceptible to

errors.” - Chase Douglas

W
W

W
.S

T
A

C
K

E
R

Y
.I

O

E
N

T
E

R
P

R
I

S
E

 S
E

R
V

E
R

L
E

S
S

 U
S

E
 C

A
S

E
S

P
A

G
E

 1
0

SERVERLESS APPLICATION
LIFECYCLE

onboard new team members, cuts down on “cowboy coding” and ensures

that team members aren’t changing things that should be left alone.

Automated development and deployment tools make it possible for businesses to

take full advantage of serverless technology’s reduced costs and potential for quick

application launches—without sacrificing the ability to test, monitor and recover from crisis.

ABOUT STACKERY

The serverless architecture movement is transforming the ways modern organizations

build applications and manage infrastructure. As early users of AWS Lambda, Stackery

Founders Chase Douglas and Nate Taggart found themselves in need of a solution

to the operational challenges presented by this technology. Having worked together

as early employees of New Relic, Nate and Chase took their experience building for

the developer and operations ecosystem and, with the early backing of Techstars

Seattle, went on to launch Stackery to bring serverless technology mainstream.

