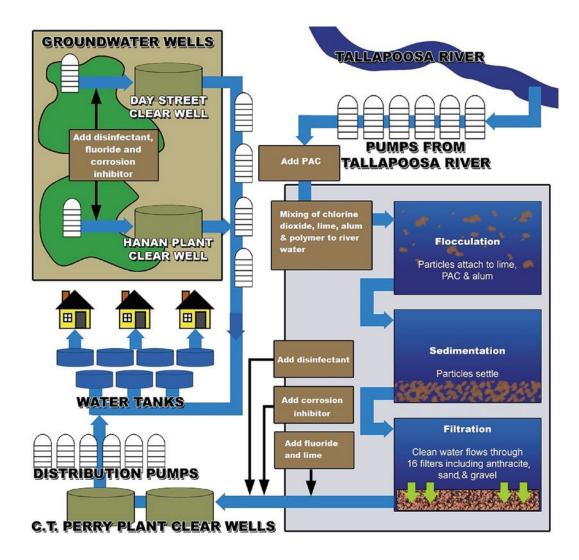
Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised, such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV / AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA / CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).


Cryptosporidium and Giardia

Cryptosporidium and Giardia are microscopic organisms that are relatively widespread in the environment. Surface waters, such as lakes and rivers that contain a high amount of sewage contamination or animal wastes are more susceptible to increased numbers of these parasites. The Montgomery Water Works and Sanitary Sewer Board is taking steps to make sure that these organisms do not pose a problem in your drinking water. Current protection measures taken at the C.T. Perry Water Purification Plant include chlorination, filtration, and monitoring turbidity levels. Additionally, routine backwashing of the filters helps to eliminate the chances of finding these organisms in treated water. Occasionally, we have found these organisms in the raw water, but neither Cryptosporidium nor Giardia has ever been detected in the finished water. We will continue to monitor for these and other contaminants and take all necessary precautions to ensure that your water is safe for your use.

PFAS

PFAS (per- and polyfluoroalkyl substances) are a large and diverse group of man-made compounds used in a variety of products like cookware, food packaging, stain repellents, and firefighting foams. Although monitoring for these compounds is currently not required, Montgomery Water Works has tested for PFAS in our drinking water sources and throughout our distribution system since 2013. These compounds were rarely found in our water and were never close to the EPA issued health advisory levels.

Water Treatment Process **Flow Diagram**

SOURCE OF MONTGOMERY'S WATER

Montgomery has groundwater sources and surface water sources that contribute to its water production capacity of approximately 95 million gallons per day. Groundwater from its west, southwest, and east well fields represents approximately one third of that capacity, while surface water from the Tallapoosa River represents approximately two thirds of it. The plants that treat and distribute water in the Montgomery service area are the Day Street, Hanan, East Montgomery Area Plants, and the C.T. Perry Water Treatment Plants. They can treat approximately 20 million gallons (Day Street), 12 million gallons (Hanan), 3 million gallons (East Montgomery Area Plants), and 60 million gallons (C.T. Perry) of water per day.

Water is a critical resource for the health of our community and the wellbeing of its population. We have a vested interest in protecting our current water sources and identifying expansion opportunities and new sources for future use. To that end, we have completed a Source Water Assessment and Wellhead Protection Plan. Both of these include a study of Montgomery's existing sources of water, along with an evaluation of any potential risks of contamination to these sources. Strategies for minimizing the risks of contamination or other adverse impacts to our water sources are also included in the Assessment. For more information about these assessments, please contact us at (334) 206-1600.

CONTACT INFORMATION

William R. Henderson, P.E.

2000 Interstate Park Dri

Montgomery, AL 3610

General Manager

(334) 206-1600

fittings, fixtures or other potential sources of lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Montgomery Water Works & Sanitary Sewer Board is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using your water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http:// www.epa.gov/safewater/lead.

BOARD OF DIRECTORS ichard E. Hanan, Chairman Ray L. Roton, Vice-Chairman Bernice Robertson, Secretary George Chapman George Chapman Hugh M. Co Greg Crawfo I. Scott Harri Pamelia M. Ki Mildred J. Wort

ADDITIONAL INFORMATION

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

The surest way to protect against lead in water is to get the lead out altogether. Montgomery Water Works has actively been working for over 30 years to remove all lead laterals, which are the pipes that provide water from the main in the street to your home or business. This proactive approach will result in a water distribution system with no lead service lines. The best way you can protect your household is to have your plumbing inspected by a licensed plumber and replace lead

> BOARD MEETINGS Regular Board of Directors meetings are held the third Tuesday of every month at 1:15 p.m. at erstate Park Drive

> > orme contiene infor muy importante sobre su agua de beber. Tradúzcalo o hable con guien que lo entienda bien.

> > > Montgomery, AL Permit No. 456 UIA J.S. Postage Presorted Std

WWWSSB.COM. water account online at τοτ εΒίΙΙ by registering your פגרה מוווות כעכופ. טוצח up Receive your bill by email paperless e-Billing service. Co GREEN with FREE

Water Quality Report 7071

The Montgomery Water Works & Sanitary Sewer Board is proud to serve the highest quality of water from all of our drinking water facilities.

At the Montgomery Water Works, the health and wellness of our employees, our customers, and the communities we serve are our primary consideration. Through all the challenges 2020 presented, we continued to provide our customers with safe and reliable water service.

We were awarded two statewide awards by the Alabama / Mississippi Section of AWWA in 2020. The C.T. Perry Water Treatment Plant was awarded the "Best Operated Plant" and Montgomery's water distribution system was awarded "Water Distribution System of the Year".

Montgomery Water Works is powered by our community. We live here and work here, and our quality of life depends on the quality of water. At Montgomery Water Works, we rely on our dedicated and hardworking employees to provide reliable, safe, high-quality water to over 200,000 Montgomery County residents, as well as businesses and industries. The steps we take every day ensure that the water we provide meets or exceeds all federal and state requirements. This report includes information about our water and the results of tests performed throughout the year.

We remain dedicated to our goal of providing the highest quality water and sewer service in harmony with the environment. You can rest assured that our commitment to your water service is unwavering, and you can depend on it today and in the future.

TABLE OF PRIMARY STANDARDS

Bacteriological	MCL	Highest Detected Level
Total Coliform Bacteria	<5%	coliform absent
E. coli	0	coliform absent
Radiological	MCL	Highest Detected Level
Gross Alpha*	15 pCi/L	1.0
Radium 228*	5 pCi/L	1.5
Turbidity	MCL	Highest Single Measurement
Turbidity	ΤT	0.16
Inorganic Chemicals	MCL	Highest Detected Level
Antimony	6 ppb	ND
Arsenic	10 ppb	ND
Barium	2 ppm	0.1
Beryllium	4 ppb	ND
Cadmium	5 ppb	ND
Chlorine	4 ppm	2.2
Chlorine Dioxide	800 ppb	290
Chlorite	1 ppm	0.96
Chromium	100 ppb	ND
Copper	AL = 1.3 ppm	90th percentile value = 0.09
Cyanide	200 ppb	ND
Fluoride	4 ppm	1.2
Lead	AL = 15 ppb	90th percentile value = 5
Mercury	2 ppb	ND
Nitrate	10 ppm	ND
Nitrite	1 ppm	ND
Selenium	50 ppb	ND
Thallium	2 ppb	ND

* Results are from the most recent testing done in 2019 in accordance with applicable regulations.

Based on a study conducted by ADEM with the approval of EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

LEGEND FOR TABLES:

2 – action level	NS – no standard exists
CL – maximum ntaminant level	NTU – nephelometric turbidity unit
CLG – maximum ntaminant level goal RDL – maximum residual sinfection level	pCi/L – picocuries per liter ppb – parts per billion ppm – parts per million
RDLG – maximum residual sinfection level goal WWSSB – Montgomery ater Works & Sanitary wer Board a – not applicable	ppt – parts per trillion TON – threshold odor number TT – treatment technique uS/cm - microSiemens per centimeter
D – not detected	

TABLE OF DETECTED CONTAMINANTS

Organic Chemicals	MCL	Highest Detected Level
2,4-D*	70 ppb	ND
2,4,5-TP (Silvex)*	50 ppb	ND
Alachlor*	2 ppb	ND
Atrazine*	3 ppb	ND
Benzo(a)pyrene (PAHs)*	200 ppt	ND
Carbofuran*	40 ppb	ND
Chlordane*	2 ppb	ND
Dalapon*	200 ррb	ND
Di(2-ethylhexyl)adipate*	400 ppb	ND
Di(2-ethylhexyl)phthlate*	6 ppb	ND
Dinoseb*	7 ppb	ND
Diquat*	20 ppb	ND
Endothall*	100 ppb	ND
Endrin*	2 ppb	ND
Glyphosate*	700 ppb	ND
Heptachlor*	400 ppt	ND
Heptachlor epoxide*	200 ppt	ND
Hexachlorobenzene*	1 ppb	ND
Hexachlorocyclopentadiene*	50 ppb	ND
Lindane*	200 ppt	ND
Methoxychlor*	40 ppb	ND
Oxamyl (Vydate)*	200 ppb	ND
PCBs*	500 ppt	ND
Pentachlorophenol*	1 ppb	ND
Picloram*	500 ppb	ND
Simazine*	4 ppb	ND
Toxaphene*	3 ppb	ND
Benzene	5 ppb 5 ppb	ND
Carbon Tetrachloride		ND
Chlorobenzene	5 ppb	ND
1,2-Dibromo-3-chloropropane	100 ppb	ND
Dibromomethane	200 ppt	ND
	50 ppt	
o-Dichlorobenzene	600 ppb	ND
p-Dichlorobenzene	75 ppb	ND
1,2-Dichloroethane	5 ppb	ND
1,1-Dichloroethylene	7 ppb	ND
cis-1,2-Dichloroethylene	70 ppb	ND
trans-1,2-Dichlorethylene	100 ppb	ND
Dichloromethane	5 ppb	ND
1,2-Dichloropropane	5 ppb	ND
Ethylbenzene	700 ppb	ND
Haloacetic Acids	60 ppb	39
Styrene	100 ppb	ND
Tetrachloroethylene	5 ppb	ND
1,2,4-Trichlorobenzene	70 ppb	ND
1,1,1-Trichloroethane	200 ррb	ND
1,1,2-Trichloroethane	5 ppb	ND
Trichloroethylene	5 ppb	ND
Total Trihalomethanes	80 ppb	48
Toluene	1 ppm	ND
Vinyl Chloride	2 ppb	ND
Xylenes	10 ppm	ND
Total Organic Carbon	TT (ppm)	1.8

Radiological	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Likely Sources
Gross Alpha*	pCi/L	15	0	1.0	ND - 1.0	Erosion of natural deposits
Radium 228*	pCi/L	5	0	1.5	0.4 - 1.5	Erosion of natural deposits
* Results are from the most	recent testing	g done in 201	9 in accorda	nce with applicable reg	ulations.	
				Highest Single	Samples	
Turbidity	Units	MCL	MCLG	Measurement	Meeting Limits	Likely Sources
Turbidity	NTU	ΤT	n/a	0.16	100%	Soil runoff
Turbidity is a measure of t Inorganic	he cloudiness	of the water.	We monitor	it because it is a good i Highest	Range of	ss of our filtration system.
Chemicals	Units	MCL	MCLG	Detected Level	Detected Levels	Likely Sources
Barium	ppm	2	2	0.1	ND - 0.1	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chlorine	ppm	MRDL =4	MRDLG =4	2.2	0.4 - 2.2	Water additive used to control microbes
Chlorine Dioxide	ррЬ	MRDL = 800	MRDLG = 800	290	20 - 290	Water additive used to control microbes
Chlorite	ppm	1	0.8	0.96	0.42 - 0.96	Byproduct of drinking water disinfectant
Copper	ppm	AL = 1.3	1.3	90th Percentile Value = 0.09	Zero sites above action level	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride	ppm	4	4	1.2	ND - 1.2	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Lead	ррЬ	AL = 15	0	90th Percentile Value = 5	Four sites above action level	Corrosion of household plumbing systems; erosion of natural deposits
Organic Chemicals	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Likely Sources
Haloacetic Acids	ppb	60	n/a	39	0.9 - 39	Byproduct of drinking water disinfection
Total Trihalomethanes	ppb	80	n/a	48	0.6 - 48	Byproduct of drinking water disinfection
Total Organic Carbon	ppm	TT	n/a	1.8	1.0 - 1.8	Naturally present in the environment
SECONDARY STAND	ARDS					
Inorganic Chemicals				Highest	Range of	

Inorganic Chemicals (required monitoring)	Units	MCL	MCLG	Highest Detected Level	Range of Detected Levels	Likely Sources
Chloride	ppm	250	-	23	7 - 23	Water additive used to control microbes
Color	units	15	-	5	ND - 5	Erosion of natural deposits
Iron	ppb	300	-	270	ND - 270	Erosion of natural deposits
Manganese	ppb	50	-	40	ND - 40	Erosion of natural deposits
Odor	TON	3	-	1	ND - 1	Erosion of natural deposits
Sulfate	ppm	250	-	61	3 - 61	Erosion of natural deposits
Total Dissolved Solids	ppm	500	-	464	166 - 464	Erosion of natural deposits
Inorganic Chemicals				Average	Range of	
(unregulated)**	Units	MCL	MCLG	Detected Level	Detected Levels	Likely Sources
Alkalinity, Total	ppm	NS	NS	121	16 - 184	Alkalinity comes from the bicarbonate, hydroxide components of a natural or treated water supply
Calcium	ppm	NS	NS	15	2 - 46	Erosion of natural deposits
Carbon Dioxide	ppm	NS	NS	5	1 - 9	Erosion of natural deposits
Conductivity	uS/cm	NS	NS	357	220 - 455	Erosion of natural deposits
Hardness. Total	ppm	NS	NS	43	5 - 134	Calcium carbonate occurs as erosion of natural deposits
Magnesium	ppm	NS	NS	1.3	0.1 - 4.6	Erosion of natural deposits
pН	std units	NS	NS	7.6	7.0 - 8.1	pH identifies the presence of acid or base in water
Phosphate	ppm	NS	NS	0.9	0.06 - 2.0	Used for corrosion control
Sodium	ppm	NS	NS	7	1 - 16	Erosion of natural deposits

** Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

DEFINITIONS

Primary Standards – Used as guides to protect public health Primary standards include maximum contaminant levels maximum contaminant level goals, action levels, and treatment techniques.

Guidelines to assure good aesthetic quality of water. Secondary standards apply to contaminants that affect the taste, odor or color of water, stain sinks or bathtubs, or interfere with treatment processes.

Secondary Standards -

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual **Disinfectant Level Goal** (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water. Action Level - The concentration of a contaminant that triggers treatment or other requirement a

water system shall follow.